Asian Resonance **Relationship between Fund Utilisation** and Agricultural Development in Post-**Reforms Period in Odisha**

Paper Submission: 15/10/2020, Date of Acceptance: 27/10/2020, Date of Publication: 28/10/2020

Jyotirmayee Mohanty Research Scholar, Dept. of Economics, Berhampur University, Berhampur, Odisha, India

K.H.Badatya

Visiting Faculty, P.G.of Economics, Khallikote Autonomous College, Berahampur, Odisha, India

Abstract The first ever National Agricultural Policy in India was announced in 2000.Government of Odisha also adopted two such separate policies in 2008 and 2013. Distinct policy options for increasing farmers' incomes resulted in growth of farmers' real income. Production in Odisha has increased manifold and yields of the major crops have increased more than three times. There are wide disparities in production and vield of crops in different agricultural zones of the State of Odisha.Improvement of agricultural production and productivity depends very much upon the way Government utilises its fund for the purpose. Hence an attempt has been made in this study to examine the relationship between the fund utilisation and agricultural development of the State.In order to evaluate the determinants of Agriculture growth, a three-step method is used to approximate the relationship and the Augmented Dickey Fuller (ADF) test followed by Engle Granger test to show that there exists no co-integration among the variables under study. Finally, stepwise ordinary least square model is developed to evaluate the predictors of agricultural growth in Odisha and followed by testing of hypotheses relating the predictors. It is concluded that the allocation and utilization of funds in agriculture and its allied sectors and irrigation and flood control measures are positively affecting the SGDPA and hence agriculture growthin Odisha. The farm mechanisation, gross cropped area, fertiliser consumption and average rainfall have positive and significant relationship while seed distribution, net sown area, agricultural credit and crop insurance has no significant relationship with SGDPA in post-reform era.

Keywords: Fund Utilisation, Agricultural Growth, ADF Test, SGDPA. Introduction

The process of development is always concerned with multiplicity of issues for which most of the nations irrespective of their level of development frame policies basing upon their variations and succeed in achieving their ends. In our country also, policies have been framed for development of industrial sector from the very beginning after independence in 1948.But to utter surprise, the agricultural sector although provides livelihood to a larger section of population besides its contribution to food supply, industrial inputs, foreign exchange earnings and commerce and business of the nation, lacks such separate policy framework for a long period of time. The first ever National Agricultural Policy in India was announced in 2000. It is not that agricultural policy has not at all been implemented, but it was adopted under the banner of planning mechanism and special schemes and programmes depending upon the thrust areas in different points of time. Similar case is noticed in case of Odisha also. After implementation of National Agricultural Policy 2000, Government of Odisha also adopted two such separate policies in 2008 and 2013. Thus in this paper an attempt has been made to analyse the impact of fund allocation and utilisation due to such policies in development of agriculture in the State

Review of Literature

A brief survey of literatures can throw some light on importance of policy options in development process of an economy. Effland (2000) on a study on US Farm Policy during first 200 hundred years pointed out that many policies have been rooted in different periods starting from Federal Land Policy in USA. Each period has ushered in a new policy approach

meant for helping farmers improve their incomes in the face of ever-increasing production. Zahniser et al (2005) examined the agricultural policy reforms in North America covering USA, Mexico and Canada. Each of these nations have been revising their agricultural policies over the past several years to bring changes in process of agricultural development. Jiang (2009) in a study on Vietnam's agricultural development found that there is a direct link between its land policy and agricultural policy developments. Its agricultural policy has been able to create an atmosphere to produce the majority of daily food requirements.

Gulati et al (2020) in a study on "Reforming Indian Agriculture" noticed that the distinct policy options for increasing farmers' incomes resulted in growth of farmers' real income by 3.6 % per annum and agricultural growth rate by about 8.6 % during the period between 2002-03 and 2015-16. Farmers' incomes increased broadly in line with the growth of agricultural GDP of the Nation. Arora (2013) put importance upon necessity of a policy initiative to attract private investment in agriculture for a long-term growth and competitiveness of the sector. Patra(2014) in a research paper on "Agricultural Development in Odisha" opined that farm production in Odisha has increased manifold and yields of the major crops such as paddy, pulses, oilseeds and vegetables have increased more than three times in last four and half decades. But he calls for adopting area-specific plans and long-term policy to bridge the widening disparities over the years. So also, Singh (2017) suggests for policy measures in the State of Odisha for further improvement of agricultural production and productivity, since a large majority of population in the State are living on this sector. Otherwise they will continue their miserable life and reel under poverty.

Statement of the Problem

Odisha has been performing well at present in terms of better economic growth. The standard of living of people in Odisha has improved with rise in per capita income. But its gap from the national average continues. There is structural shift from the primary to tertiary sector over the years (Sahu, 2016). Agriculture sector has a decelerating trend although continues to remain a priority sector because of its high potential for employment generation. So the problem is to find the reasons behind the deceleration and the impact of the policies adopted in Odisha in recent years on fund allocation for the growth of agriculture.

Need of the Study

The need of the present study concentrates on the consequences of fund allocation and its utilisation through implementation of agriculture policy in 2008 and 2013 in the State of Odisha. There are many factors responsible for bringing changes in the agricultural production in Odisha so that the State Domestic Product from Agriculture improves in recent years. Hence, the allocation of funds by Govt. of Odisha for these factors influence the State Gross Domestic Product from Agriculture (SGDPA herein after). The present study involves the changes in

Asian Resonance SGDPA before and after implementation of

agricultural policy in Odisha during post reform period. **Objectives of the Study**

The following objectives have been chosen in this study.

- 1. To study the relationship between utilisation of fund and SGDPA in the State of Odisha during post reform period.
- 2 To examine the relationship between SGDPA and each of the factors that are responsible for the growth of agriculture in Odisha.

Hypotheses of the Study

The hypotheses of the present study are as follows.

H₁

There is no significant positive relationship between SGDPA and the state's total fund allocated for agriculture and allied sector.

H₂

There is no significant positive relationship between SGDPA and the state's total fund allocated for irrigation and flood control measures.

H₃

There is no significant positive relationship between SGDPA and the state's total seed distribution.

H₄

There is no significant positive relationship between SGDPA and the state's total power consumption in agriculture. H₅

There is no significant positive relationship between SGDPA and the state's total farm mechanization. H₆

There is no significant positive relationship between SGDPA and the net sown area of Odisha. H₇

There is no significant positive relationship between SGDPA and the gross cropped area of Odisha.

H₈

There is no significant positive relationship between SGDPA and the state's total fertilizer consumption.

H₉

There is no significant positive relationship between SGDPA and the state's total agriculture credit provided to the farmers.

H₁₀

There is no significant positive relationship between SGDPA and the total crop insurance provided to the farmers. **H**₁₁

There is no significant positive relationship between SGDPA and the average rainfall in Odisha. **Research Methodology**

Sample Selection

The present study covers the Agricultural Sector of the whole State of Odisha. Since attempt has been made to study the impact of fund allocation on SGDPA the factors responsible for agricultural production comes under the study. Agricultural development depends on several exogenous and

E: ISSN No. 2349-9443

uncontrollable factors like rainfall and climatic condition as well as some endogenous factors like consumption, irrigation, fertilizer farm mechanisation, net sown area (NSA), area sown more than once (ASMO), gross cropped area (GCA) etc. The information relating to irrigation potential, power consumption. farm mechanisation, fertilizer consumption, and seed distribution relating the whole State has been included.

Sources of Data

The period of study ranges from 1990 to 2019. The data on SGDPA have been collected from State Economic Survey, Directorate of Economics and Statistics in Orissa, but data relating to irrigation potential, rainfall, power consumption, farm mechanisation, fertilizer consumption, and seed distribution and from the Annual Agricultural Statistics published by the government of Odisha. Similarly, land used for cultivation, NSA and GCA has been compiled from the agriculture statistics reports of Odisha. Data on the use of fertiliser(including nitrogen, phosphate and potash) has been collected from the State Fertilizer Statistics for Orissa. The amount of power consumption for agricultural purposes in Odisha is obtained from the economic survey reports. The data on allocation of funds has been collected from the Ministry of Agriculture and Farmers' Welfare, Government of Odisha.

Period of Study

The period of present study covers the post reforms period starting from 1990-91 to 2018-19. Since the Govt. of Odisha has adopted agricultural policy in 2008 and 2013, the study covers both the periods before and after the policy adoption.

Tools used in the Study

The research used secondary time-series data. In order to evaluate the determinants of Agriculture growth, a three-step method is used to approximate the relationship between agricultural development and selected independent variables. First of all, the secondary data is transferred to its natural logarithm value so that it can be incorporated in the Augmented Dickey Fuller (ADF) test. A unit root test i.e. Augmented Dickey Fuller (ADF) test on the variables of the model have been carried out to decide if it is stationary. Based on the outcome of the Augmented Dickey Fuller tests, the second step involves evaluating whether the series is co-integrated (i.e. verification for the existence of any long-term relationship among the variables) using Engle and Granger's (1986) two-step residual based procedure. The purpose of adopting this approach is to examine the elasticity of the independent variables. The null hypothesis associated with the Engle Granger test is that there exists no co-integration among the variables under study and the alternative hypothesis is that there exists co-integration. Finally, stepwise ordinary least square model is developed to evaluate

Asian Resonance the predictors of agricultural growth in Odisha. In this

study on the agriculture, the GSDP at constant prices has been considered for the regression analysis rather than current prices. For minimising the impact of price changes or inflation, the state domestic product was calculated by measuring the prevailing prices of the products and services in the base year (i.e. 1990-91). The base year is updated to the very recent base with an intention to capture the practical economic growth that should be meaningful for study then there is a systemic development in the economy. Further, the static regression model is presented below.

 $\beta_9 X t_9 + \beta_{10} X t_{10} + \beta_{11} X t_{11} + \beta_{12} X t_{12} + g_t$

Where Yt = Log(yt) = the natural logarithm of thedependent variable 'y'

Xti=Log(xti) = the natural logarithm of the independent variables 'xi' Where, Yt is the dependent variable represented by SGDPA at constant prices

Xt₁ is the total fund allocated for agriculture and allied sector in year 't' (FAAS)

Xt₂ is the total fund allocated for irrigation and flood control in year 't' (FIFC)

Xt₃ is the Irrigation Potential (IP)

Xt₄ is Seed Distribution (SD)

Xt₅ is Power Consumption in Agriculture (PC)

Xt₆ is Farm Mechanisation (FM)

Xt₇ is Net Sown Area (NSA)

Xt₈is the Gross Cropped Area (GCA)

Xt₉ is the total Fertilizer Consumption (total of NPK Fertilizer) (FC)

Xt₁₀ is the Agriculture Credit provided to the farmers in the state (AC)

Xt₁₁ is total Crop Insurance in terms of Insurance sum assured (ISA)

Xt₁₂is the Average Rainfall (AR)

B₀ is the Constant term in the regression equation called the intercept.

B₁, β_2 , β_3 ... β_{12} are the Regression Coefficients for the independent variables and

gt is the error term of the regression equation.

Data Analysis

Plan Schemes and Budget Outlays

The Odisha agriculture department has a mission to plan, develop, use and manage state capital effectively and efficiently in order to ensure agriculture growth, increase in farmers income level and ensure food security (Odisha Government, Budget, 2016-17). To this end, the Government of Odisha has agreed on the implementation of various plans, policies and schemes. The Table no.-1 presents the total fund allocated by the government Odisha towards two major sectors such as agriculture and allied sector and irrigation and flood control, that influence the agriculture productivity in the state.

E: ISSN No. 2349-9443

Asian Resonance

Table-1: Plan Year Wise Fund Utilised in Agriculture and allied sector in Odisha (Amount in Crores)

Plan Year	Fund Utilised in Agriculture & Allied Activities	Year wise Growth in percentage	Total Fund Utilised in Five-year plans	Growth in Percentage
1990-91	49.30	Base Year	101.96	
1991-92	52.66	6.82	101.00	
1992-93	79.47	50.91		
1993-94	89.76	12.95		
1994-95	98.88	10.16	480.78	Base Year
1995-96	100.20	1.33		
1996-97	112.47	12.25		
1997-98	110.40	-1.84		
1998-99	124.56	12.83		
1999-00	135.34	8.65	633.57	31.78
2000-01	129.33	-4.44		
2001-02	133.94	3.56		
2002-03	71.69	-46.48		
2003-04	43.97	-38.67		
2004-05	46.95	6.78	272.75	-56.95
2005-06	51.84	10.42		
2006-07	58.30	12.46		
2007-08	175.01	200.19		
2008-09	398.45	127.67		
2009-10	377.30	-5.31	2808.97	929.87
2010-11	711.58	88.60		
2011-12	1146.63	61.14		
2012-13	1661.43	44.90		
2013-14	2223.72	33.84		
2014-15	3008.19	35.28	15690.81	458.60
2015-16	3676.56	22.22		
2016-17	5120.91	39.29		
2017-18	3692.12	-27.90		
2018-19	5070.99	37.35	8763.11	

Source: Economic Survey and Annual Budget, Government of Odisha

From the table no.-1 it is revealed that only agriculture after 2008, the fund allocated in the agriculture sector has witnessed growth. But prior to that, agriculture seems to be ignored although the contribution of recent five-Table-2: Plan Year Wise Fund Utilised for Irrigation and flood control in the seems to be ignored although the contribution of recent five-

agriculture to the GDP is significant. The growth trend also reveals that there is three-digit growth in investment pattern in the past one decade or in the recent five-year plans.

able-2: Plan fear wise Fund Otlinsed for imgation and nood control measures in Odisha (Amount in Crores)									
Plan Year	Fund Utilised for Irrigation & Flood Control	Year wise Growth in Percentage	Total Fund utilised in Five-year plans	Growth in Percentage					
1990-91	209.30	Base Year	F12 F2						
1991-92	304.22	45.35	515.52						
1992-93	178.87	-41.20							
1993-94	184.85	3.34							
1994-95	189.49	2.51	943.84	Base Year					
1995-96	190.33	0.44							
1996-97	200.30	5.24							
1997-98	218.87	9.27							
1998-99	221.85	1.36	1146.91	21.5					
1999-00	239.49	7.95							

A -	
/ CLON	Docononco
	RENUMATION

E: ISSN No	. 2349-9443	ASI	an Res	onance
2000-01	242.33	1.19		
2001-02	224.37	-7.41		
2002-03	563.95	151.35		
2003-04	456.39	-19.07		
2004-05	445.03	-2.49	2519.04	119.6
2005-06	503.67	13.18		
2006-07	550.00	9.20		
2007-08	1544.85	180.88		
2008-09	1575.40	1.9		
2009-10	1601.13	1.63	8205.39	225.7
2010-11	1641.82	2.54		
2011-12	1842.19	12.20		
2012-13	2178.17	18.24		
2013-14	2493.02	14.45		
2014-15	3205.35	28.57	18577.23	126.4
2015-16	4735.09	47.72		
2016-17	5965.60	25.99		
2017-18	8501.16	42.50		
2018-19	8563.03	0.73	17064.19	

Source: Economic Survey and Annual Budget, Government of Odisha

From the above table the data reveals that it is only after 2007-08, the fund allocated and utilization for irrigation and flood control has increased significantly. However, similar trend of increased utilisation can be observed in the year 2002-03. Further, it can be inferred that the investment in this particular sector has increased tremendously after 2014-15 i.e. during the 12th five-year plan. Unlike the **Table-3: Plan Year Wise Total Fund utilised in Agriculture and Irrigation projects in Odisha (Amount in**

fund allocation and investment pattern in the agriculture and allied sector, there is a higher investment in irrigation and flood control measures because the state is highly affected by cyclones, floods and other natural disasters. The plan period growth trend also reveals that there is no negative

Crores)

Plan Year	Total Fund utilisedin agriculture and irrigation in Odisha	Year wise Growth in Percentage	Total Fund utilised in Five-year plans	Growth in Percentage
1990-91	258.60	Base Year	615 /8	
1991-92	356.88	38.00	013.40	
1992-93	258.34	-27.61		
1993-94	274.61	6.30		
1994-95	288.37	5.01	1424.62	Base Year
1995-96	290.53	0.75		
1996-97	312.77	7.65		
1997-98	329.27	5.28		
1998-99	346.41	5.21		
1999-00	374.83	8.20	1780.48	25.0
2000-01	371.66	-0.85		
2001-02	358.31	-3.59		
2002-03	635.64	77.40		
2003-04	500.36	-21.28		
2004-05	491.98	-1.67	2791.79	56.8
2005-06	555.51	12.91		
2006-07	608.30	9.50		
2007-08	1719.86	182.73	11014.36	294.5

E: ISSN No. 2349-944	3	Asia	n Resor	nance
2008-09	1973.85	14.77		
2009-10	1978.43	0.23		
2010-11	2353.40	18.95		
2011-12	2988.82	27.00		
2012-13	3839.60	28.47		
2013-14	4716.74	22.84		
2014-15	6213.54	31.73	34268.04	211.1
2015-16	8411.65	35.38		
2016-17	11086.51	31.80		
2017-18	12193.28	9.98		
2018-19	13634.02	11.82	25827.30	

Source: Economic Survey and Annual Budget, Government of Odisha

The Table-3 presents the information relating to the total fund utilised in agriculture and allied activities as well as irrigation and flood control. It is evident that the first phase of growth in fund allocation and corresponding utilisation is observed in 2002-03 and a second phase of increase is observed in 2007-08. The total fund allocated follows the trend observed in case of irrigation and flood control. Again, it is also apparent that the total allocation during 11th and 12th five year growth pattern is also increasing positively.

Correlation Analysis and ADF test

The table-4 presents the correlation matrix of the variables considered for the study. The prime intention behind this test is to verify the correlation between the dependent and independent variables as well as the multi-collinearity effect among the independent variables. In the table the independent variables showing correlation value 'r' greater than 0.8 indicates the existence of multi-collinearity effect. Again, the correlation for the variable power consumption with other variables is not significant at all. This indicates that the variable, power consumption is having no relationship and role in the agriculture development. This behaviour of the variable is also confirmed again in the Augmented Dickey-Fuller test where it is not significant at 1stlag difference. Further, it is wise to drop the variables which are having high correlation and only one variable is enough to be used in the regression model to get reliable result.

													SGDP
	AC	AI	ARF	FAAS	FC	FIFC	FM	GCA	IP	NSA	PC	SD	Α
AC	1												
AI	.900	1											
ARF	.105	057	1										
FAAS	.653**	.528	008	1									
FC	.880	.852	006	.758	1								
FIFC	.861	.731	.046	.897	.862	1							
FM	.787**	.768**	105	.695**	.897**	.740**	1						
GCA	306	502	.495	295	438	314	549	1					
IP	.784	.610	.204	.901**	.840**	.936	.696**	083	1				
NSA	911	875	.011	718	930	852**	863	.489**	772	1			
PC	219	339	.091	.368	158	.158	129	.242	.233	.207	1		
SD	.703**	.695	024	.679**	.896**	.700**	.766**	450	.698**	835	272	1	
SGDPA	.884**	.797	.044	.878**	.948**	.947**	.893**	403	.909**	915	.042	.814	1

Table-4: Pearson Correlation Matrix for the Variables taken for the study

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

To test for co-integration between the twelve non-stationary time series variables, first, the OLS regression analysis has been done, and then the ADF test is used to determine if the residual having a unit root at level I(0) or it is stationary(Table-5). This process is like the two-step residual test of Engel and Granger (1986). The time series is assumed to be cointegrated if the residual is stationary. In turn, the nonstationary I (1) series cancel each other to generate a stationary I(0) residual. Table-5 shows the Augmented Dickey Fuller Test for the variables as well as the residual. It rejects the null hypothesis of nonstationarity at 1% level of significance. It is established that there exists co-integration between

SGDPA, AC, AI, ARF, FAAS, FC, FIFC, FM, GCA, IP, NSA, SD. But in case of Power consumption (PC) the ADF test is not significant both in level and 1st Asian Resonance difference. Therefore, this particular variable has been dropped from the final regression model.

Table-5: Augmented Dickey-Fuller test statistic							
SI.No.	Variable Name	Leg	t-Statistic	Prob.*			
1	SGDPA	Level	-0.38962	0.898			
	SGDPA*	1st difference	-8.37698	0.000			
2	ARF	Level	-6.23413	0.000			
	ARF*	1st difference	-10.3591	0.000			
3	FAAS	Level	-0.12289	0.937			
	FAAS*	1st difference	-3.43281	0.019			
4	FC	Level	-1.23207	0.646			
	FC*	1st difference	-5.84045	0.000			
5	FIFC	Level	0.57672	0.986			
	FIFC*	1st difference	-6.13055	0.000			
6	FM**	Level	-3.52101	0.015			
	FM*	1st difference	-5.09336	0.000			
7	GCA	Level	-2.01613	0.279			
	GCA*	1st difference	-9.54347	0.000			
8	IP	Level	0.46207	0.982			
	IP*	1st difference	-8.57483	0.000			
9	NSA	Level	-0.95515	0.755			
	NSA*	1st difference	-4.03065	0.005			
10	PC	Level	-1.03584	0.726			
	PC	1st difference	-2.5474	0.117			
11	SD	Level	-2.15474	0.226			
	SD*	1st difference	-4.38603	0.002			
12	AC	Level	-0.88201	0.779			
	AC*	1st difference	-5.27022	0.000			
13	AI	Level	-1.19959	0.660			
	AI*	1st difference	-3.50176	0.016			
14	Residual [#]	Level	-4.41287	0.002			
l an Long	h: 1 (Automotio h	and on SIC maxing-6)					

Lag Length: 1 (Automatic - based on SIC, maxlag=6) *Significant at Lag-1 i.e. I(1)

**significant at Lag-0 i.e. I(0)

#ADF test of the residual termed as Engle-Granger cointegration test, a significant value at level indicates that there is a long-term relationship between the variables.

The Regression Model to establish the predictors of Agriculture growth in Odisha

The table-6 shows the model improvement summary. i.e. in the step wise regression, the Rsquare value has been increased in every step to reach a higher value of R-square for ensuring a best model. Here in this case the R-square value has been increased by adding and eliminating one independent variable by another and finally reached a value of R=0.994 and R-square i.e. the coefficient of determination is 0.989. Hence, it can be inferred that the model with the selected independent variables explains 98.9% variability in the dependent variable.

Model	R	R Square	Adjusted R Square	S.E. of the Estimate
1	.948 ^a	.898	.895	.11667
2	.982 ^b	.964	.961	.07092
3	.991 [°]	.983	.981	.05007
4	.993 ^d	.986	.983	.04645

-

-

-	443				Sia			IICI
5	.994 ^e	.989		986			.04201	
a. Predictor	rs: (Constant)	, FC						
b. Predictor	rs: (Constant)	, FC, FIFC						
c. Predictor	rs: (Constant)	, FC, FIFC,	FM					
d. Predictor	rs: (Constant)	, FC, FIFC,	FM, ARF					
e. Predictor	rs: (Constant)	, FC, FIFC,	FM, ARF, F	FAAS				
	Table	-7: Test of A	ANOVA ^a foi	. gooqı	ness of	model fit		
Model	S	um of Squa	res	df	Mean	Square	F	Sig.
1 Regre	ession	3	.248	1		3.248	238.616	.000 ⁰
Resid	ual		.368	27		.014		
Total		3	6.616	28				0
2 Regre	ssion	3	.485	2		1.742	346.437	.000
Resid	ual		.131	26		.005		
Total		3	6.616	28				d
3 Regre	ssion	3	5.553	3		1.184	472.479	.000 ^u
Resid	ual		.063	25		.003		
Total		3	6.616	28				9
4 Regre	ssion	3	5.564	4		.891	412.991	.000°
Resid	ual		.052	24		.002		
Iotal		3	5.616	28			105 001	aaaf
5 Regre	ssion	3	5.575	5		./15	405.221	.000
Resid	ual	0	.041	23		.002		
I otal	Variable: CCT	3	.616	28				
a. Dependent N	Constant) F							
D. Frediciors. (Constant), FC							
C. FIEUICIOIS. (Constant), FC	<i>, </i>						
d Dradiatora: (Constant) El							
d. Predictors: (Constant), FC	C, FIFC, FM	ADE					
d. Predictors: (e. Predictors: (f. Predictors: ()	Constant), F(Constant), F(Constant), FC	C, FIFC, FM C, FIFC, FM,	ARF	2				
d. Predictors: (e. Predictors: (f. Predictors: (Table-8: Stepw	Constant), F(Constant), F(Constant), FC i se OLS Red	C, FIFC, FM C, FIFC, FM, , FIFC, FM, ression Mo	ARF ARF, FAAS	; ients ^a				
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model	Constant), F(Constant), F(Constant), FC i se OLS Reg Uns	C, FIFC, FM C, FIFC, FM, C, FIFC, FM, Interstion Mo Standardized	ARF ARF, FAAS del Coefficient	ients ^a	Standard	lized	t	Sia.
d. Predictors: (e. Predictors: (f. Predictors: (0 Table-8: Stepw Model	Constant), F(Constant), F(Constant), FC r ise OLS Reg Uns	C, FIFC, FM C, FIFC, FM, , FIFC, FM, ression Mo standardized	ARF ARF, FAAS del Coefficient	sients ^a	Standarc	dized	t	Sig.
d. Predictors: (e. Predictors: (f. Predictors: (0 Table-8: Stepw Model	Constant), F(Constant), F(Constant), FC ' ise OLS Reg Uns	C, FIFC, FM C, FIFC, FM, , FIFC, FM, pression Mo standardized B	ARF ARF, FAAS odel Coeffic Coefficient Std. Erro	c ients ª ts	Standarc Coefficio Beta	dized ents	t	Sig.
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model	Constant), F(Constant), F(Constant), FC ' ise OLS Reg Uns :ant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, pression Mo standardized B .718	ARF ARF, FAAS del Coeffic Coefficient Std. Erro .3	s ients a ts	Standarc Coefficio Beta	dized ents	t 1.976	Sig. .058
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC	Constant), F(Constant), F(Constant), FC ' ise OLS Reg Uns	C, FIFC, FM C, FIFC, FM, FIFC, FM, pression Mo standardized B .718 2.195	ARF ARF, FAAS del Coefficient Coefficient Std. Erro .3	sients ^a ts r 63 42	Standarc Coefficio Beta	dized ents a .948	t 1.976 15.447	Sig. .058 .000
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const	Constant), F(Constant), F(Constant), FC ' ise OLS Reg Uns :ant)	C, FIFC, FM C, FIFC, FM, pression Mo standardized B .718 2.195 2.367	ARF ARF, FAAS del Coefficient Std. Erro .3 .1	sients ^a ts 5 63 42 26	Standarc Coefficie Beta	dized ents a .948	t 1.976 15.447 7.251	Sig. .058 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const FC	Constant), F(Constant), F(Constant), FC ' ise OLS Reg Uns :ant)	C, FIFC, FM C, FIFC, FM, pression Mo standardized B .718 2.195 2.367 1.188	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3	cients ^a ts r 63 42 26 70	Standarc Coefficio Beta	dized ents a .948 .513	t 1.976 15.447 7.251 6.974	Sig. .058 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const FC FIFC	Constant), F(Constant), F(Constant), FC ' ise OLS Reg Uns :ant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, pression Mo standardized B .718 2.195 2.367 1.188 .322	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1	Sients ^a ts 5 63 42 26 70 47	Standarc Coefficio Beta	dized ents .948 .513 .505	t 1.976 15.447 7.251 6.974 6.861	Sig. .058 .000 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const FC FIFC 3 (Const	Constant), F(Constant), F(Constant), FC Tise OLS Reg Uns tant) tant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, pression Mo standardized B .718 2.195 2.367 1.188 .322 3.845	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .3 .1	Sients ^a ts 5 63 42 26 70 47 65	Standarc Coefficio Beta	dized ents .948 .513 .505	t 1.976 15.447 7.251 6.974 6.861 10.522	Sig. .058 .000 .000 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const FC 5 FIFC 3 (Const FC	Constant), F(Constant), F(Constant), FC r ise OLS Reg Uns tant) tant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, pression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .3 .1 .3 .1	Sients ^a ts 663 42 26 70 47 65 85	Standarc Coefficio Beta	dized ents .948 .513 .505 .197	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467	Sig. .058 .000 .000 .000 .000 .000 .021
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const FC 3 (Const FC FIFC 3 (Const FC FIFC	Constant), F(Constant), F(Constant), FC r ise OLS Reg Uns tant) tant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, pression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .3 .1 .0 .3 .1	Sients ^a ts 663 42 26 70 47 65 85 33	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381	Sig. .058 .000 .000 .000 .000 .000 .021 .000
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const FC 3 (Const FC 5 FIFC 3 (Const FC FIFC FM	Constant), F(Constant), F(Constant), FC r ise OLS Reg Uns tant) tant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, pression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348 .098	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .0 .3 .1 .0 .3 .1 .0 .0	sients ^a ts 63 42 26 70 47 65 85 33 19	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545 .314	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381 5.212	Sig. .058 .000 .000 .000 .000 .000 .021 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const FC 5 (Const FC 5 (Const FC 5 (Const FC 5 (Const FC 5 (Const FC 5 (Const 5 (Const)5 (Const 5 (Const 5 (Const 5 (Const	Constant), F(Constant), F(Constant), FC rise OLS Reg Uns tant) tant) tant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, ression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348 .098 3.012	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .0 .3 .1 .0 .3 .1 .0 .3 .1 .0 .3 .1 .0 .3 .1 .0 .0 .0	Sients ^a ts 663 42 26 70 47 65 85 33 19 003	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545 .314	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381 5.212 5.992	Sig. .058 .000 .000 .000 .000 .021 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const FC 3 (Const FC 5 FIFC 3 (Const FC FIFC 4 (Const FC	Constant), F(Constant), F(Constant), FC rise OLS Reg Uns tant) tant) tant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, ression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348 .098 3.012 .416	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .0 .3 .1 .0 .3 .1 .0 .3 .1 .0 .3 .1 .0 .1 .0 .0 .1	Sients ^a ts 663 42 26 70 47 65 85 33 19 03 72	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545 .314 .179	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381 5.212 5.992 2.411	Sig. .058 .000 .000 .000 .000 .021 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const FC 3 (Const FC 5 FIFC 3 (Const FC FIFC 4 (Const FC FIFC 5 FIFC	Constant), F(Constant), F(Constant), FC rise OLS Reg Uns tant) tant) tant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, ression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348 .098 3.012 .416 .343	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .0 .3 .1 .0 .3 .1 .0 .3 .1 .0 .0 .1 .0 .0 .0 .0	Sients ^a ts 663 42 26 70 47 65 85 33 19 03 72 31	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545 .314 .179 .537	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381 5.212 5.992 2.411 11.003	Sig. .058 .000 .000 .000 .000 .021 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const FC 2 (Const FC 3 (Const FC 5 FIFC 3 (Const FC FIFC 4 (Const FC FM 4 (Const FC FIFC FM	Constant), F(Constant), F(Constant), FC rise OLS Reg Uns tant) tant) tant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, ression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348 .098 3.012 .416 .343 .106	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .0 .3 .1 .0 .3 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Sients ^a is 63 42 26 70 47 65 85 33 19 603 72 31 18	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545 .314 .179 .537 .341	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381 5.212 5.992 2.411 11.003 5.968	Sig. .058 .000 .000 .000 .000 .021 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (C Table-8: Stepw Model 1 (Const FC 2 (Const FC 3 (Const FC 5 FIFC 3 (Const FC FIFC 4 (Const FC FM 4 (Const FC FIFC FM ARF	Constant), F(Constant), F(Constant), FC rise OLS Reg Uns tant) tant) tant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, ression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348 .098 3.012 .416 .343 .106 .293	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .0 .3 .1 .0 .3 .1 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .1 .1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	Sients ^a is 63 42 26 70 47 65 85 33 19 603 72 31 18 30	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545 .314 .179 .537 .341 .056	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381 5.212 5.992 2.411 11.003 5.968 2.247	Sig. .058 .000 .000 .000 .000 .021 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (Table-8: Stepw Model 1 (Const FC 2 (Const FC 3 (Const FC 5 (Const	Constant), F(Constant), F(Constant), FC rise OLS Reg Uns tant) tant) tant) tant) tant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, ression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348 .098 3.012 .416 .343 .106 .293 2.823	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .0 .3 .1 .0 .3 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .1 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Sients ^a is 63 42 26 70 47 65 85 33 19 603 72 31 18 30 61	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545 .314 .179 .537 .341 .056	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381 5.212 5.992 2.411 11.003 5.968 2.247 6.128	Sig. .058 .000 .000 .000 .000 .021 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (Table-8: Stepw Model 1 (Const FC 2 (Const FC 3 (Const FC 5 (Const FC 5 (Const FC	Constant), F(Constant), F(Constant), FC Tise OLS Reg Uns tant) tant) tant) tant)	C, FIFC, FM C, FIFC, FM, FIFC, FM, ression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348 .098 3.012 .416 .343 .106 .293 2.823 .505	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .0 .3 .1 .0 .3 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .1 .0 .0 .1 .1 .0 .1 .1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	Sients ^a is 663 42 26 70 47 65 85 33 19 603 72 31 18 30 61 60	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545 .314 .179 .537 .341 .056 .218	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381 5.212 5.992 2.411 11.003 5.968 2.247 6.128 3.159	Sig. .058 .000 .000 .000 .000 .021 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (Table-8: Stepw Model 1 (Const FC 2 (Const FC 3 (Const FC 5 (Const FC FM 4 (Const FC FM 5 (Const FC FIFC	Constant), F(Constant), F(Constant), FC Tise OLS Reg Uns tant) tant) tant) tant)	C, FIFC, FM C, FIFC, FM, C, FIFC, FM, FIFC, FM, ression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348 .098 3.012 .416 .343 .106 .293 2.823 .505 .261	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .0 .3 .1 .0 .3 .1 .0 .0 .0 .1 .0 .0 .0 .1 .0 .0 .0 .1 .0 .0 .1 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Sients ^a is 663 42 26 70 47 65 85 33 19 603 72 31 18 30 61 60 43	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545 .314 .179 .537 .341 .056 .218 .409	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381 5.212 5.992 2.411 11.003 5.968 2.247 6.128 3.159 6.083	Sig. .058 .000 .000 .000 .000 .021 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (Table-8: Stepw Model 1 (Const FC 2 (Const FC 3 (Const FC 5 (Const FC FM 4 (Const FC FM 5 (Const FC FM 5 (Const FC FM	Constant), F(Constant), F(Constant), FC Tise OLS Reg Uns tant) tant) tant) tant)	C, FIFC, FM C, FIFC, FM, C, FIFC, FM, FIFC, FM, FIFC, FM, Iression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348 .098 3.012 .416 .343 .106 .293 2.823 .505 .261 .097	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .0 .3 .1 .0 .3 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	Sients ^a is 63 42 26 70 47 65 85 33 19 60 37 21 31 18 30 61 60 43 17	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545 .314 .179 .537 .341 .056 .218 .409 .311	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381 5.212 5.992 2.411 11.003 5.968 2.247 6.128 3.159 6.083 5.861	Sig. .058 .000 .000 .000 .000 .021 .000 .000 .000
d. Predictors: (e. Predictors: (f. Predictors: (Table-8: Stepw Model 1 (Const FC 2 (Const FC 3 (Const FC 5 (Const FC FM 4 (Const FC FM 5 (Const FC FM ARF 5 (Const FC FM ARF	Constant), F(Constant), F(Constant), FC Tise OLS Reg Uns tant) tant) tant) tant)	C, FIFC, FM C, FIFC, FM, C, FIFC, FM, FIFC, FM, ression Mo standardized B .718 2.195 2.367 1.188 .322 3.845 .456 .348 .098 3.012 .416 .343 .106 .293 2.823 .505 .261 .097 .314	ARF ARF, FAAS del Coefficient Std. Erro .3 .1 .3 .1 .0 .3 .1 .0 .3 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .0 .1 .0 .0 .0 .1 .0 .0 .0 .1 .1 .0 .0 .0 .1 .1 .0 .0 .1 .1 .0 .1 .1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	Sients ^a is 63 42 26 70 47 65 85 33 19 60 37 21 31 18 30 61 60 43 17 18	Standarc Coefficio Beta	dized ents .948 .513 .505 .197 .545 .314 .179 .537 .341 .056 .218 .409 .311 .060	t 1.976 15.447 7.251 6.974 6.861 10.522 2.467 10.381 5.212 5.992 2.411 11.003 5.968 2.247 6.128 3.159 6.083 5.861 2.651	Sig. .058 .000 .000 .000 .000 .021 .000 .000 .024 .000 .034 .000 .034 .000* .000* .000* .000* .0014*

*Significant at 0.05 level

The results of the OLS Regression model provided in Table-8 could be achieved using it as step wise regression method. It is used to extract only those variables which are contributing towards the agricultural development in Odisha in terms of state's agriculture GDP.The final regression model given in table-7 is perfectly meaningful and not spurious, even though it is built on non-stationary data levels. In addition, there is a long-term positive association between SGDPA,Fund Allocated in Agriculture and allied Sector, Fund allocated in Irrigation and Flood Control in the state, Fertilizer Consumption, Farm Mechanisation, Average Rainfall in Odisha.

It is important to recognize that time series data have a general tendency to increase with time, directly induced by changes in another variable. In certain cases, two time series processes seem to be correlated just because they all evolve over time for

causes that may be linked to other unobserved variables (Wooldridge, 2009).In other words, it is necessary to take into consideration the unobserved, trending variables that influence the dependent variable being correlated with the independent variables. If this possibility is ignored the model will have a spurious association between one dependent Table-9:OLS Regression Model-1 showing R-square and DWS (d)

Asian Resonance variable and the independent variables. According to Granger and Newbold, R-squared > d, where d is the Durbin-Watson statistic, is a strong rule of thumb for the assumption that the estimated regression model is spurious one i.e. a non-sense model. From Table-9, it can be observed that R-squared < d; thus, it can be inferred that the calculated regression is not spurious.

ob.
0.019
0.000
0.004
0.000
0.014
0.000
6.321
0.359
-3.320
-3.037
-3.231
2.116

Table-10: Excluded Variables^a from the regression model-1

	Model	Beta In	t	Sig.	Partial	Collinearity Statistics
	5440	orch	0.440		Correlation	Tolerance
1	FAAS	.375°	6.119	.000	.768	.426
	FIFC	.505°	6.861	.000	.803	.257
	AC	.222°	1.781	.087	.330	.225
	AI	039 ⁻	329	.745	064	.274
	ARF	.050°	.813	.424	.157	1.000
	FM	.222°	1.647	.111	.307	.196
	GCA	.014°	.208	.837	.041	.808
	NSA	244°	-1.491	.148	281	.135
	PC	.196	3.886	.001	.606	.975
	SD	178 [°]	-1.301	.205	247	.197
_	IP	.384°	4.411	.000	.654	.295
2	FAAS	.189 [°]	2.448	.022	.440	.195
	AC	010 [°]	112	.911	022	.184
	AI	033 [°]	460	.649	092	.274
	ARF	.025	.647	.523	.128	.990
	FM	.314 [°]	5.212	.000	.722	.192
	GCA	026 [°]	605	.550	120	.793
	NSA	059 ^c	548	.589	109	.125
	PC	.066 [°]	1.454	.158	.279	.639
	SD	.009 ^c	.094	.926	.019	.177
	IP	.052 ^c	.474	.639	.094	.120
3	FAAS	.121°	2.094	.047	.393	.184
	AC	029 ^ª	464	.647	094	.184
	AI	037 ^d	737	.468	149	.274
	ARF	.056 ^d	2.247	.034	.417	.945
	GCA	.039 ^d	1.218	.235	.241	.678
	NSA	.031 ^d	.393	.698	.080	.118
	PC	.043 ^d	1.306	.204	.258	.626
	SD	.098 ^d	1.549	.134	.302	.165
	IP	.135 ^d	1.814	.082	.347	.115
4	FAAS	.130 ^e	2.519	.019	.465	.183

AC

AI GCA

NSA PC

SD

IP

AC

AI

GCA

NSA

PC

SD

5

.075

.359

.614

.438

.995

.808.

.887

.375

.589

.165

.091

.106

.196

.499

.108

.408

.130

.059

	As	sian Re	esonance
-1.056	.302	215	.174
580	.568	120	.271
.178	.860	.037	.502
.438	.666	.091	.118
1.245	.226	.251	.623

.363

.191

.108

.166

-.001

-.052

-.031

.190

-.116

IP	051
D / ///	

a. Dependent Variable: SGDPA

b. Predictors in the Model: (Constant), FC

c. Predictors in the Model: (Constant), FC, FIFC

d. Predictors in the Model: (Constant), FC, FIFC, FM

e. Predictors in the Model: (Constant), FC, FIFC, FM, ARF

-.062^e -.028^e

> .006^e .032^e

.038^e

.107^e

.076^e

.035^f

.040^t

.000^t

-.017¹

-.005

.056^f

1.867

.935

.511

.790

-.007

-.246

-.143

.906

-.549

f. Predictors in the Model: (Constant), FC, FIFC, FM, ARF, FAAS

The table-10 shows the variables which are excluded from the stepwise regression process. The excluded variables again separately used as independent variable for analysing their contribution towards the agriculture growth measured in terms of SGDPA. The corresponding OLS regression model is presented in table-11. The regression model parameters give convincing results with R-square value 0.964 and Durbin-Watson statistics (d) 1.432 which is greater than the R-square value. This indicates that the model is not spurious. From the

regression model it can be inferred that irrigation potential is showing a significant positive impact on the growth of SGDPA whereas, the GCA is having a negative relationship with the Growth in the model. However, its first lag difference i.e. D(GCA) is positively and significantly related to the first lag of SGDPA (Table-12). on the other hand, NSA, Agriculture insurance as total sum assured, Agriculture Credit provided to the farmers, seed distribution is not significantly predicting the agriculture growth in Odisha.

Table-11:OLS Regression Model-2 showing R-square and DWS (d)

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
С	19.853	7.613	2.608	0.016	
IP	1.339	0.182	7.368	0.000*	
AC	0.040	0.029	1.354	0.190	
SD	0.092	0.103	0.895	0.381	
NSA	-1.300	2.121	-0.613	0.546	
GCA	-2.856	0.825	-3.461	0.002*	
AI	0.002	0.025	0.071	0.944	
R-squared	0.964	Mean dependent var		6.321	
Adjusted R-squared	0.955	S.D. dependent var		0.359	
S.E. of regression	0.077	Akaike info criterion		-2.096	
Sum squared residual	0.129	Schwarz criterion		-1.766	
Log likelihood	37.388	Hannan-Quinn criteria		-1.992	
F-statistic	99.218	Durbin-Watson stat (d)		1.424	
Prob(F-statistic)	0.000				
Dependent Variable: SGDPA, Method: Least Squares Sample: 1990 2018, Included observations: 29					

*significant at 5% level

Table-12: OLS Regression Model-3 showing R-square and DWS (d)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.049	0.009	5.629	0.000
D(GCA)	0.999	0.410	2.435	0.022*

Asian Resonance

1.138	1.247	0.913	0.370
0.358	Mean dependent var		0.044
0.306	S.D. dependent var		0.053
0.044	Akaike info criterion		-3.314
0.048	Schwarz criterion		-3.172
49.401	Hannan-Quinn criteria		-3.271
6.965	Durbin-Watson statistic (d)		2.384
0.004			
	1.138 0.358 0.306 0.044 0.048 49.401 6.965 0.004	1.1381.2470.358Mean dependent0.306S.D. dependent0.044Akaike info criterio0.048Schwarz criterio49.401Hannan-Quinn c6.965Durbin-Watson s0.004Kaike info criterio	1.138 1.247 0.913 0.358 Mean dependent var 0.306 S.D. dependent var 0.044 Akaike info criterion 0.048 Schwarz criterion 49.401 Hannan-Quinn criteria 6.965 Durbin-Watson statistic (d) 0.004

Dependent Variable: D(SGDPA), Method: Least Squares

Sample (adjusted): 1991 2018, Included observations: 28 after adjustments

Findings of the Study

The findings of the study can be well known from the results of the hypotheses.

Following are the inferences drawn from the hypotheses.

H₁: There is no significant positive relationship between SGDPA and the state's total fund allocated for agriculture and allied sector.(**Reject**, **p<0.01**)

H₂: There is no significant positive relationship between SGDPA and the state's total fund allocated for irrigation and flood control measures.(**Reject**, p<0.01)

H₃: There is no significant positive relationship between SGDPA and the state's total seed distribution.(Accept, p>0.05)

H₄: There is no significant positive relationship between SGDPA and the state's total power consumption in agriculture.(Not Tested as variable is eliminated from the final model)

H₅: There is no significant positive relationship between SGDPA and the state's total farm mechanization.(**Reject, p<0.01**)

H₆: There is no significant positive relationship between SGDPA and the net sown area of Odisha.**(Accept, p>0.05)**

H₇: There is no significant positive relationship between SGDPA and the gross cropped area of Odisha.(**Reject**, p<0.01)

H₈: There is no significant positive relationship between SGDPA and the state's total fertilizer consumption.(Reject, p<0.01)

H₉: There is no significant positive relationship between SGDPA and the state's total agriculture credit provided to the farmers.(Accept, p>0.05)

 H_{10} : There is no significant positive relationship between SGDPA and the total crop insurance provided to the farmers.(Accept, p>0.05)

H₁₁: There is no significant positive relationship between SGDPA and the average rainfall in Odisha.(Reject, p<0.01)

Conclusion

This study covers the analysis of the utilization of funds in agriculture and allied sector in the plan periods starting from 1990 to 2019. Using OLS regression, the effect of the fund allocated for agriculture and allied sector as well as for irrigation and flood control measures has been analysed. It has been concluded that the allocation and utilization of funds in these two sectors are positively affecting the SGDPA and hence agriculture growth in Odisha. The

second regression model predicts that irrigation potential in Odisha is positive predictor of agriculture growth again. In the same model it can be found that the seed distribution, net sown area, agricultural credit and crop insurance has no significant relationship with the SGDPA. However, it can also be noticed that farm mechanisation, gross cropped area, fertiliser consumption and average rainfall have positive and significant relationship with SGDPA. It can also be verified that the first difference model of regression for NSA and GCA is positively predicting the Agriculture GDP in the state.

Suggestions

Govt. Policy should be directed to revamp the seed distribution system, expansion of agricultural credit and its timely supply and effective crop insurance mechanism along with the measures to broaden the net sown area so that these factors will have their impact in the agricultural growth of the State of Odisha. It can further be suggested that the process of farm mechanisation and the timely distribution of fertiliser by Govt. should be expanded so as to induce further growth of agriculture in State. **Limitations of the Study**

The present study has its own limitations in the sense that the study relies on the data that have been collected as the accurate. If any inaccuracy is encrypted, then the study do not have any yardstick to measure it. It also bears with the limitations that the used model possesses.

Scope for Further Research

It is expected that the researchers will come forward to have further research to study the impact of the factors on the growth of the State Gross Domestic Product from Agriculture covering the period prior to the economic reforms adopted in the nation.

References

- 1. Baltagi, Badi H. A Companion of Theoretical Econometrics, 557-61.
- 2. Directorate of Agriculture and food production, Govt. of Odisha, retrieved from http://www.agriodisha.nic.in/content/pdf/final%20 RTI%202017-18.pdf
- 3. Effland, A.B.W.(2000: U.S.Farm Policy: The First 200 Years, Agricultural outlook/March 2000, Economic Research Service/ USDA.
- Engel, R. F., Granger, C. W. J., & Rice, J. A. Weiss (1986). Semiparametric Estimates of the Relationship Between Weather and Electricity.

- E: ISSN No. 2349-9443 Journal of American Statistical Association, 81(394), 310-320.
- Govt. of Odisha: Agricultural Statistics of Orissa -5. At a glance, Directorate of Agriculture and Food Production.
- GOI. (2011). Economic Survey 2011-12, Economic Division, Department of Economic 6. Affairs, Ministry of Finance, Govt, of India, Oxford University Press, New Delhi.
- Granger, C. W., Newbold, P., & Econom, J. 7. (1974). Spurious regressions in econometrics.
- 8. Gulati, A. and Bouten, M.M. (2020): Reforming Indian Agriculture, EPW Vol. 55 No.11, March 14.
- https://niti.gov.in/writereaddata/files/Odisha_Repo 9. rt_0.pdf
- 10. https://agriodisha.nic.in/content/pdf/ACTIVITY%2 0REPORT_2018-19.pdf
- 11. Jiang, Hugh (2009): Review of Vietnamese Agricultural Policy, Transnational Corporations Review, Vol. 1. No.3.

Orissa Agricultural Statistics, 1999-2019. Directorate of Agriculture and Food Production, Orissa, 1999-2010.

Asian Resonance

- 13. Patra, R.(2014): Agricultural Development in Odisha: the Disparities Growing?, Are International Journal of Food and Agricultural Economics, ISSN 2147-8988, Vol.2 No.3.
- 14. Sahu, N.C.(2016): Sustainability Goals and Constraints for Development of Odisha, Presidential address in 48th Orissa Economics Association.
- 15. Singh, Manmohan (1995), "Inaugural Address" Indian Journal of Agricultural Economics, Vo. 50, No.1, January-March, pp. 1-8.
- 16. Wooldridge, M. (2009): An introduction to multiagent systems. John Wiley & Sons.
- 17. Zahniser, S., Young, E. and Wainio, J.(2005): Recent Agricultural Policy Reforms in North America retrieved from www.ers.usda.gov